Gerard C. M. Bourke and Geoffrey Stedman*

Chemistry Department, University College of Swansea, Singleton Park, Swansea SA2 8PP, UK

The profile of rate constant *versus* $[H^+]$ for the acid catalysed pathway of the nitrous acid reaction with the hydroxyammonium ion can be quantitatively interpreted in terms of a reversible *O*-nitrosation, followed by an O to N migration of the nitroso group in the conjugate base species NH₂ONO. There is no need to assume a non-steady-state mechanism involving NO⁺, as has been proposed previously.

Although the details of the mechanism of reaction between hydroxyammonium ion and nitrous acid [eqn. (1)] at low

$$HNO_2 + NH_3OH^+ \longrightarrow N_2O + 2H_2O + H^+$$
 (1)

acidities are well understood there is a long standing problem concerning the reaction at higher acidities, above $[H^+] = 0.01$ mol dm⁻³. At low acidities ^{1,2} reaction involves an \overline{N} -nitrosation by neutral reagents ONX (X = Cl, Br, SCN, NO₂) reacting with the free base NH₂OH. The rate law, $v = k[NH_3OH^+]$ $[HNO_2][X^-]$, shows that the rate is independent of acidity. At higher acidities there is an acid catalysed reaction which involves the nitrosonium ion as the electrophile reacting with NH₃OH⁺. A comparison of the reactivity patterns for NH₃OH⁺, NH₂MeOH⁺, NH₃OMe⁺ and NH₂MeOMe⁺ with nitrous acid showed² that the acid catalysed pathway occurs in those compounds where there is an hydroxy group; this has been confirmed ³ in other systems of the type NH_2ROH^+ and NH_3OR^+ . It appears that in these cases there is an initial O-nitrosation to form a nitrito species NH_3ONO^+ , followed by an O to N migration of the nitroso group. The reaction follows second-order kinetics [eqn. (2)] and the unresolved problem

$$-d[HNO_2]/dt = k_2[NH_3OH^+][HNO_2]$$
(2)

concerns the acidity dependence of k_2 . Typical profiles of k_2 versus [HX] where HX is HClO₄ and H₂SO₄ are shown in Fig. 1. Around pH1-2 the rate law is given by [eqn. (3)], but as the

$$-d[HNO_2]/dt = k_3[H^+][HNO_2][NH_3OH^+]$$
(3)

acidity rises k_2 increases steeply, reaches a sharp maximum close to $[HX] = 2 \mod 4m^{-3}$ and then decreases slowly towards higher acidities. The mechanism proposed originally is shown in eqns. (4)–(7). Bonner *et al.*⁴ have shown by isotopic labelling

$$H^{+} + HNO_{2} + \frac{K_{NO_{\perp}}}{fast} NO^{+} + H_{2}O$$
 (4)

$$NO^{+} + NH_{3}OH^{+} \xrightarrow{k_{5}} NH_{3}ONO^{+} + H^{+} \qquad (5)$$

$$NH_3ONO^+ \xrightarrow{k_6} ONNH_2OH^+$$
(6)

$$ONNH_2OH^+ \xrightarrow{fast} N_2O + H_2O + H^+$$
(7)

that a symmetrical intermediate is involved in the formation of

Fig. 1 Variation of the second-order rate constant k_2 with concentration of mineral acid at 0 °C: \oplus , H₂SO₄: \bigcirc , HClO₄

 N_2O at all acidities up to 5 mol dm⁻³ perchloric acid, and *cis*hyponitrous acid, HON=NOH, may be an intermediate in eqn. (7). The levelling off in rate at higher acidities was ascribed ² to the term $k_{-5}[H^+]$ becoming much greater than k_6 so that effectively eqn. (5) becomes an equilibrium. The fact that k_2 decreases with increase in acidity beyond the maximum was ascribed to a medium effect on k_6 , the decrease being less marked in a mixture of HClO₄ + NaClO₄ of constant ionic strength.

A much more quantitative treatment of the shape of the $k_2/[H^+]$ profile was devised by Bennett *et al.*⁵ who studied the reaction in solutions of constant ionic strength LiNO₃ + HNO₃. They fitted their data by a non-linear least-squares procedure to an expression of the type shown in eqn. (8), using

$$k_2 = \frac{aa_{\rm H}}{1 + da_{\rm H} + fa_{\rm H}^2} \tag{8}$$

calculated values of the hydrogen ion activity $a_{\rm H}$. Under their conditions $a_{\rm H}$ is calculated to be almost proportional to the molar concentration of nitric acid. They comment that the value of the parameter d is extremely sensitive around the maximum,

Fig. 2 Treatment of kinetic data for reaction in sulfuric acid at 25 $^{\circ}$ C by use of acidity functions

and that as the data set is limited the value of d may be close to zero. They were only able to predict an equation of the form of eqn. (8) from the mechanism of eqns. (4)–(7) by assuming that NO⁺ is not at a steady-state distribution. This assumption is not reasonable. The formation constant K_{NO} for NO⁺, and the rate constant for its formation from $H^+ + HNO_2$ are known, and Ridd has estimated⁶ that the rate constant for the reverse reaction in eqn. (4), the rehydration of NO⁺, is ca. 2 \times 10⁹ s⁻¹. This gives a rate that is many orders of magnitude greater than the rate of any other reaction in which NO⁺ is consumed in this system. Were the non steady-state explanation to be correct it would be in complete contrast to a great amount of published work on the kinetics and mechanism of diazotisation, deamination and nitrosation reactions. In fairness to Bennett et al. it must be noted that they explicitly stated there were problems, and recognised the possibility of there being additional steps in the mechanism.

A much more satisfactory interpretation 4,7 is to assume that the O to N migration of the nitrosyl group can only occur in the free base form of the *O*-nitrosated species, where there is a free lone pair on the nitrogen to accept the nitrosonium ion. Zollinger has independently recently made⁸ a similar suggestion. If eqn. (6) is replaced by eqns. (9) and (10), then a steady

$$NH_{3}ONO^{+} \xrightarrow{K_{a}} NH_{2}ONO + H^{+}$$
(9)

$$NH_2ONO \xrightarrow{k_2} ONNHOH$$
 (10)

state treatment assuming the acid-base equilibrium (9) to be maintained gives rate eqn. (11), writing concentrations of H^+

$$k_{2} = \frac{k_{5}k_{7}K_{NO}K_{a}[H^{+}]}{k_{-5}[H^{+}]^{2} + k_{7}K_{a}}$$
(11)

rather than activities. This is exactly the form found by Bennett *et al.* with the coefficient d = 0. It also fits the data⁹ for HClO₄ + NaClO₄ of constant ionic strength of 3 mol dm⁻³. At low acidities eqn. (11) simplifies to $k_2 = k_5 K_{NO}$ [H⁺], and k_5 is calculated to be 6×10^6 dm³ mol⁻¹ s⁻¹ at 25 °C. This is much lower than the figure of 2×10^9 dm³ mol⁻¹ s⁻¹ which can be calculated ¹⁰ for the reaction of NO⁺ with NH₃NH₂⁺, presumably due to the lower nucleophilic character of the hydroxyl compared to the amino group.

In their study of the nitrosation of another cationic species by NO⁺, the anilinium ion, Challis and Ridd showed¹¹ the importance of working at constant ionic strength. This may not always be practicable. In the present work we had occasion to check the detailed acidity dependence of k_2 in sulfuric acid at

25 °C, where partial ionisation to sulfate and hydrogensulfate ions occurs. We attempted to allow for activity coefficient effects by use of acidity functions. The NO⁺-HNO₂ equilibrium has been reported to follow the $H_{\rm R}$ acidity function, and we assumed that the reverse reaction of eqn. (5) and equilibrium (9) would both follow H_0 . Substituting $h_{\rm R}$ and h_0 for the appropriate [H⁺] terms in the numerator and denominator of eqn. (11), leads to eqn. (12). If this expression is rearranged, a plot of $h_{\rm R}/k_2$ versus

$$k_2 = \frac{k_5 k_7 K_{\rm NO} K_{\rm a} h_{\rm R}}{k_- s h_0^2 + k_7 K_{\rm a}} \tag{12}$$

 h_0^2 should be linear. Kinetic data for reaction in sulfuric acid from 0.92 to 2.94 mol dm⁻³ are shown in Fig. 2, with a slope of 0.0339 ± 0.005 s and an intercept of 0.30 ± 0.09 mol² s dm⁻⁶. Above 2.94 mol dm⁻³ sulfuric acid there were deviations. Bennett et al. comment that for their system the acidity function approach did not work as well as their method of calculating a value of $a_{\rm H}$. There is a wide range of acidity functions with different dependences upon mineral acid concentration, depending on the type of neutral indicator base used, and our choice of H_0 , although successful, was rather arbitrary. We do not claim general validity for our approach. At sufficiently high acidities it has been found that for some mineral acids $H_{\rm R}$ = $2H_0$. For conditions where $k_{-5}h_0^2 \gg k_7 K_a$ this would lead to a value of k_2 of $k_5 k_7 K_{NO} K_a / k_{-5}$, essentially independent of acidity, as is observed. We do not see any way at present of obtaining values for k_7 , K_a and k_{-5} . However, some information about reaction (10) may be obtained from the solvent isotope effect. The value for higher concentrations of H_2SO_4/D_2SO_4 was measured ² to be $k_2(H)/k_2(D) \approx 6.9$. If reaction (5) is essentially a rapid equilibrium then eqns. (4) and (5) may be written as eqn. (13). From Schowen's approximate treatment¹² the solvent

$$NH_3OH^+ + HONO \Longrightarrow NH_3ONO^+ + H_2O$$
 (13)

isotope effect on this equilibrium should be close to unity. Thus $6.9 = K_a(H)k_7(H)/K_a(D)k_7(D)$. For a wide range of acids $K_a(H)/K_a(D)$ comes to within $\pm 20\%$ of 3.4. Assuming the value to be a reasonable estimate for NH₃ONO⁺, then $k_7(H)/k_7(D) \approx 2$, suggesting a modest degree of stretching of the bonds to hydrogen for the transition state of reaction (10).

Acknowledgements

We acknowledge helpful correspondence with Dr. G. M. Brown.

References

- 1 M. N. Hughes and G. Stedman, J. Chem. Soc., 1963, 2824.
- 2 T. D. B. Morgan, G. Stedman and M. N. Hughes, J. Chem. Soc. B, 1968, 344.
- 3 G. C. M. Bourke, unpublished work.
- 4 F. T. Bonner, J. Kada and K. G. Phelan, Inorg. Chem., 1983, 22, 1389.
- 5 M. R. Bennett, G. M. Brown, L. Maya and F. A. Posey, *Inorg. Chem.*, 1982, **21**, 2461.
- 6 J. H. Ridd, Adv. Phys. Org. Chem., 1978, 16, 1.
- 7 G. C. M. Bourke, Ph.D. Thesis, University of Wales, 1985.
- 8 H. Zollinger, Helv. Chim. Acta, 1988, 71, 1661.
- 9 G. M. Brown, personal communication.
- 10 J. R. Perrott, G. Stedman and N. Uysal, J. Chem. Soc., Dalton Trans., 1976, 2058.
- 11 B. C. Challis and J. H. Ridd, J. Chem. Soc., 1962, 5208.
- 12 R. L. Schowen, Prog. Phys. Org. Chem., 1972, 9, 275.

Paper 1/04665F Received 27th August 1991 Accepted 16th October 1991